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Abstract. We present a high order immersed finite element (IFE) method for
solving 1D parabolic interface problems. These methods allow the solution
mesh to be independent of the interface. Time marching schemes including
Backward-Euler and Crank-Nicolson methods are implemented to fully dis-
cretize the system. Numerical examples are provided to test the performance
of our numerical schemes.

1 Introduction
We consider the following one dimensional parabolic interface problem:

ut - (ﬂux)x = f(t9 -x)7 X € Q’ t € (O’ T]’
u(t, x) = g(t, x), x€0Q, te(0,T], (1)
u(0, x) = up(x), x€Q.
Assume that Q is an open interval separated by an interface point @. The interface point
divides Q into two sub-domains Q% and Q such that Q = Q" U Q™ U {a}. We assume that

there is only one type of material in each sub-domain. This means that the coefficient function
[ is continuous within each sub-domain but may be discontinuous across the interface:

pun ={ fe0 Teo @

The solution « is assumed to satisfy the following interface jump conditions:
[u]l. =0, (3)
[Buxlle = 0. 4)

For the sake of simplicity, we consider only one interface point. The extension is straightfor-
ward for the case of multiple interface points.
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The interface problems (1)-(4) arise in many applications in science and engineering. A
wide variety of numerical methods have been developed to solve PDE interface problems,
such as the finite element method [1]. However, the convergence rate may not be optimal
unless the interface is resolved by the solution mesh. In other words, the mesh needs to
fit the interface. For problems that involve a moving interface, the body fitting restriction
requires a new mesh generation at each time level. This will be time consuming, especially
for the complicated interface shapes in the 2D or the 3D domain. Consequently, the overall
computational cost will increase.

Research has been done to develop numerical methods based on interface independent
mesh, such as immersed finite element methods (IFEM) [2, 3]. The basic idea is to modify
the finite element basis functions locally to satisfy the jump conditions associated with the
interface. This method has been extended to solve moving interface problems [4—6]. Most
of the existing literature for time-dependent problems are for lowest order space approxima-
tions. In this paper, we consider some higher-order IFE approximations for one-dimensional
parabolic interface problems. For temporal discretization, we utilize the standard Backward-
Euler and Crank-Nicolson methods. Our numerical schemes converge in optimal orders in
both spatial and temporal discretization even if our solution meshes do not fit the interface.

The rest of the article will be organized as follows. In section 2, we recall some prelimi-
nary results of the immersed finite element method. In section 3, we derive the semi-discrete
and the fully-discrete numerical schemes for solving the parabolic interface problem. Lastly,
in section 4, numerical examples are provided to demonstrate features of our schemes.

2 Preliminaries of the Immersed Finite Element Method

In this section, we briefly recall the one-dimensional IFEM spaces. The main idea of IFEM
is to locally modify the FEM basis function to accommodate the flux jump condition (4). To
be more specific, let us consider an arbitrary partition a = xp < x| < xp < -+ < x = b of the
domain Q. For an interface problem, there exists at least one element containing the interface
point. Without loss of generality, let us assume that the interface point « lies in the element
K = (x1, x»). This element is called an interface element, and the rest of elements are called
non-interface elements. The local linear IFE space consists of two piecewise linear functions
¢o.x and ¢; g. They are formed to satisfy the nodal value conditions and the interface jump
conditions as follows

B (2 —a)+p (a@—x)

, inK-,
oy = | B a—m " )
0K B (x2 = X) -
B (2 —a)+BHa—x) '
B (x ﬁ;;i;sf()a ) K
_ 2 — - X1
P = pae@ e pa-n) ©
B (a-a)+f(a—x)

For higher order IFE basis functions, we refer to [7] for Lagrange type IFE basis functions
and [8] for orthogonal IFE basis functions. Plots for some orthogonal high order IFE basis
functions are shown in Figure 1.

Following standard procedure, we can define the global IFE basis functions by requiring

the continuity across the element boundaries. Let ¢;, j = 1,---, L, be the global IFE basis
functions. Then the global IFE space can be written as S, = span{¢,, ¢, - ,¢.}. Note that
S, c H(Q).
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Figure 1. IFE local basis functions on the element (-1, 1) with g~ = 1, 8 = 10, and @ = —0.1.

3 Numerical Schemes

In this section, we present the IFE method of lines (MOL) algorithm for solving parabolic
interface problems. The method of lines technique is useful since the spatial and the temporal
discretizations are done separately. This allows MOL to be used in a variety of problems to
achieve accurate numerical approximations.

3.1 Semi-Discretization
We first consider the spatial discretization for model problem (1). To derive its weak formu-

lation, we multiply (1) by any test function v(x) € Hé (€2). Applying integration by parts and
the flux jump conditions, we have

f u,(t, x)v(x)dx + B u(t, x)v(x)dx + f Bru(t, x)v(x)dx = ff(t, x)v(x)dx.
Q Q- Qr Q

Note that the interface jump condition (4) must hold to obtain the weak formulation of the
interface problem. Define the IFE trial and test function spaces as

UpyZ{veSy:vlo =9}, and V,2{veS),:vlgq =0} @)

The semi-discrete problem for each time ¢ is: find u;, € U, such that

f Oy (t, x)v(x)dx + fﬁ(t, g (t, X)v(X)dx = f f(t, x)v(x)dx, YveV, ®)
Q Q Q

where
N

wi(t,2) = Y u(0(0),

=1

3
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Then the weak formulation (8) is equivalent to

N N
fg D w0 (0¢i0dx + fg Bt,x) ) u (0 (x)g(0)dx = fg F(t, )¢(0dx, Vg € V.
j=1 j=1

This can be equivalently written in the matrix-vector form
Mu'(7) + S (Hu() = £2). C))

The notations in (9) are specified as follows
e M is the mass matrix and M;; = fQ @ i(0)pi(x)dx.

e S(?) is the stiffness matrix with S;;(r) = fQ B, x)¢;.(x)¢;(x)dx. Note that the stiffness
matrix S (¢) is time dependent since the coefficient function  is time dependent.

e f(r) is the source vector with f;(r) = fQ f(t, x)pi(x)dx.

o u(t) = [u; (), ur(t), - - ,un()]” is the unknown vector.

3.2 Full-Discretization

We further discretize the ODE system (9) by some well-known difference schemes such as
Forward/Backward-Euler methods and Crack-Nicolson methods. We derive a general frame-
work to incorporate all these methods by introducing a parameter 6 € [0, 1].

Consider a uniform partition of the time domain, 0 = #p < t; < --- < ty = T, where
t, = nAt and At = T/N. Evaluate equation (9) at ¢ = t,, + A¢. To approximate the derivative
u'(t, + 0Ar), we let
u(fye1) —u(ty)

At ’

Note that if 8§ = 0 or 1, the approximation (10) is first order accurate. If § = 1/2, the
approximation is second order accurate. We will also approximate S (¢, + 6Af)u(z, + 6Ar) and
f(z, + 6Ar) by the following approximations:

u'(t, + 6Ar) = (10)

Sty + 0AD(t, + 6A1) ~ (1 = O)S (t)u(ty) + 68 1y )(E041) (1n

and
f(t, + 0Ar) ~ (1 — O)f(z,) + Of(t,11). (12)

Again, when 6 = 1/2, the approximations (11) and (12) are second-order accurate; otherwise,
it will be only first order. Applying (10), (11), and (12) into (9), our fully-discretized scheme
becomes

(M +0Ats™ " )u! = (M = (1 - O)AIS")u" + (1 - A" + OALE™". (13)

For 6 = 0, % and 1, equation (13) becomes the Forward-Euler, the Backward-Euler, and the
Crank-Nicolson methods, respectively. To start the time marching scheme (13), the initial
vector ug can take the interpolation of the initial function u, from (1). In particular, we can
choose g = [ug(x1), up(x2), - - -, uo(x)]” .

The Forward-Euler method is notoriously unstable as it creates heavy oscillations in gen-
eral. On the other hand, both the Backward-Euler (BE) method and the Crank-Nicolson (CN)
method are very stable. From the derivation, we can expect the convergence rates in the tem-
poral discretization to be O(Af) and O(A#?) for BE and CN, respectively. Combining with
the optimal convergence for spatial discretization from Section 3.1, we look to achieve the
overall convergence rate listed in Table 1. In this table, k denotes the polynomial degree for
IFEM spaces.
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Table 1. Convergence Rates for IFE-MOL Algorithms

L® Norm L2 Norm H" Norm
BE | O(K* + A1) | O(F1+ A1) | O(hk+ &)
CN |0 (hk+l + Aﬂ) 0) (hk“ + Aﬂ) 0] (hk + Aﬂ)

4 Numerical Results

In this section, we present a few numerical examples to test the performance of our schemes.
For each test, we use both linear and quadratic IFEMs for spatial discretization on a family
of uniform meshes {77}, where each mesh size is & = % The temporal discretization uses the
Backward-Euler and Crank-Nicolson methods on a uniform time partition with step size At
equal to the spatial mesh size A.

4.1 Example 1: Interface Problem with Piecewise Constant Coefficient g

In this example, we consider the model problem (1) on the domain Q = (-1,1) and an
interface point at @ = % We assume the coefficient function to be piecewise constant as
follows

1 x€@,a),

Pt x) ‘={ 10 xe(al).

The exact equation of this problem is

{ cos(x)e?, x € (0,a),
u(t,x) =4 1 , 9 ), (14)
10 cos(x)e”’ + 0 cos(a)e”, xe€(a,l).

One can easily verify that the solution (14) satisfies the jump conditions (3) and (4).

We report the error of numerical solution at the final time level in L™, L2, and H! norms.
Numerical results for linear and quadratic IFEMs with the Backward-Euler scheme are re-
ported in Table 2 and Table 3, respectively. Numerical results for linear and quadratic IFEM
with the Crank-Nicolson scheme are reported in Table 4 and Table 5, respectively. We ob-
serve from these tables that the convergence rates in all three norms match the expected
convergence rates in Table 1.

Table 2. Errors and Convergence Rate for Linear IFEM-BE Approximation for Example 1

1/h L* Norm  L* Order [>Norm  L?Order | H'Norm  H' Order
10 | 7.3813e-02 4.1887e-02 2.4848e-01

20 | 3.8486e-02 0.9396 2.2788e-02  0.8782 1.2717e-01 0.9664
40 | 1.9475e-02 0.9827 1.1842e-02  0.9443 | 6.3971e-02  0.9913
80 | 9.7969¢-03 0.9912 6.0301e-03  0.9737 | 3.2148e-02  0.9927
160 | 4.9134e-03 0.9956 3.0420e-03  0.9872 | 1.6096e-02  0.9980

4.2 Example 2: Parabolic Interface Problem With Non-Constant Coefficient 5

In this example, we consider the interface problem with a large contrast non-constant coeffi-
cient function as defined below:

_[ D xeOa),
A0 '_{ 100¢'(x +2)%,  x € (@ 1),

5
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Table 3. Errors and Convergence Rate for Quadratic IFEM-BE Approximation for Example 1

1/h L* Norm L% Order [’Norm L*Order | H'Norm  H' Order
10 | 7.4509e-02 4.6375e-02 1.8966¢-01

20 | 3.8321e-02 0.9590 2.3855e-02  0.9590 | 9.7560e-02  0.9591
40 | 1.9435e-02 0.9794 1.2099e-02  0.9794 | 4.9480e-02  0.9795
80 | 9.7869¢-03 0.9896 6.0932¢-03  0.9896 | 2.4917e-02  0.9897
160 | 4.9110e-03 0.9948 3.0576e-03  0.9948 1.2503e-02  0.9948

Table 4. Errors and Convergence Rate for Linear IFEM-CN Approximation for Example 1

/h | L®Norm L® Order | L?Norm  L?>Order | H'Norm  H' Order
10 | 3.1941e-03 3.4594e-03 1.5913e-01

20 | 8.1522e-04 1.9701 8.8366e-04 1.9689 8.0547¢e-02 0.9823
40 | 2.0391e-04 1.9993 2.2099e-04 1.9995 4.0343e-02 0.9975
80 | 5.0999¢-05 1.9994 5.5641e-05 1.9898 2.0233e-02 0.9956
160 | 1.2750e-05 1.9999 1.3916e-05 1.9994 1.0122e-02 0.9993

Table 5. Errors and Convergence Rate for Quadratic IFEM-CN Approximation for Example 1

1/h L* Norm L% Order [?Norm L[*Order | H'Norm  H' Order
10 | 2.6190e-03 1.6302e-03 6.6931e-03

20 | 6.5654e-04 1.9961 4.0875e-04  1.9957 1.6836e-03 1.9911
40 | 1.6425e-04 1.9990 1.0226e-04  1.9989 | 4.2097e-04 1.9997
80 | 4.1069¢-05 1.9998 2.5570e-05 1.9997 | 1.0536e-04 1.9984
160 | 1.0268e-05 1.9999 6.3928e-06  1.9999 | 2.6338e-05 2.0002

where the interface @ = 5/6 in this example. The exact solution is

e (x +2)°, x€(0,a),
ez’(cl +e(x— @)+ c3(x— ) + d(x)), x € (a, 1),

u(t, x) = {

where,
cl=Q2+a)’-[3+a) a6 +a)—6(2+a)log(2 + a))]/100,
2 =[3(1 = 2a +2(5 + 2a) log(2 + @))] /100,
3 =[6(1 + 2+ a)log2 + @)]/((2 + a)100),
d(x) = ((3 + x)(x(6 + x) — 6(2 + x)log(2 + x)))/100.

Tables 6 and 7 show the error and convergence rates for the Backward-Euler solution
with linear and quadratic IFEM functions, respectively. Tables 8 and 9 report the errors for
Crank-Nicolson method using linear and quadratic IFEM functions. Again, these results
are consistent with the anticipated convergence order in Table 1. This example shows the
robustness of our numerical schemes with respect to the non-constant coefficient functions
and high-jump circumstances.
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